Review II
Problem 5

Prablent5.
The uncaring of the apendizion curs an vector sickles
A. Circulation of the frow around a closed curve r
EWervill see that curb is a measure K of circulation.

Consider a flew of some quantity Q with velocity vector F s you can all think the F is the farce vector field that moles pieces of Q flow?.
Now consider an closed oriented curve C The circulation of the flow arcana C is the amount of the greentity Q that is trousperteq around C per unit tine. transertea around C per unit tried a point F pushes Q by the vector $F(P)$.
if We are only butenested in the component of rip) that pushes Q in the direction of C.

$$
20 \text { For this we cansibar }
$$

at the tangent vector $\bar{T}(P)$ of the curve c, what his: of unit size and
 in the dinecsigy of the arientrbion of C.
3° The Component of FCPD in the Rirection of C ie., the Qrivections of T(P) is $F(P)=\overline{T C P}$ als cralled the projeciral proj $\frac{1}{2}(P)^{F(P)}$ of $F(P)$ anso the linel given by $T(\theta)$.

4° This is dmount of fransponbofiey of geearkity Q othat F aner as thelpinitts vithe divectiva कfthe curvec)
yo The civculatigur of
Q along C is abtainad by pertiver togelen these lacal confribirtious, i.e.

$$
\text { circulosion }=S \underbrace{F \cdot T} d Q
$$

is the rutpgrac of sere det produnct over C and with resped to the length l_{0}
6° The integral of the tangent courponent of F is - we knowr - jued the usual rntegral ("line iutogral") of F on the cearve $C \Rightarrow S o$:

This is our final formelor for circulat́ous. Ex.
B. |Circulation in the pong it

- We wart to calculate circulation for the fallowing curve.
Choose a Poons P aud a vectors, draw the pane π ("pi") through P and arthegond to V :

- New consider the circle (CE in the plane π which hal center at P, radius E and orientation which is counter-clackwise when vied fromitip tip of v_{0} to
Cu use of Stokes theanine: wort to calculate circulation F-dr ar ovens the cree C_{E} using the Stokes theorem.

c_{8}

For this we need to choose on eriented surface
I where boundary is E -
The obvious choice is the diss
$\left\{\begin{array}{l}D_{\varepsilon} \text { with confer p gradus } \varepsilon_{0}\end{array}\right.$ that lies in the plane π and has anvientitios n which is in the direction of $v \rho i \cdot e, n n=\frac{v}{i v i}:$
Than: $S_{C_{\varepsilon}} F \cdot d w={ }^{2} F \cdot d r$

$$
C_{\varepsilon}=\partial D_{\varepsilon}
$$

E. Approximation ${ }^{\circ}$ circulation

- Ne now know that the circulation around C_{E}
where: n denotes the normal vectors on De
which describe the orientation

However:

$$
\text { of the surface } D_{\varepsilon} \text {. }
$$

since D_{ε} lies in the plane $\Pi \rightarrow a$
neral vectors are the saiva. So:

$$
\begin{aligned}
\vec{n} & =n \quad \text { (the vector at } p \text {) } \\
& =\frac{v}{w} .
\end{aligned}
$$

- So, circulation is

$$
\begin{aligned}
& \text { calahian is } \\
& \text { Ss cur } Q(F)-n \text { a },
\end{aligned}
$$

- An a smell disc Debit is reaconelde to approximate the vector field curl (F) by its constant value at P : we get: apps.
- So: the value at P

$$
\text { n. [cur e(F)](D)] iss } \frac{\text { appriximatevi }}{\frac{C_{\varepsilon}-\text { circulation }}{A(D)}}
$$

F. The cempanert curlofs
niurl $\left[F\right.$) (in the divectiof n : (colculat if $\left.\begin{array}{l}\text { exactly }\end{array}\right)$

- In order to understanal precisaly the value ofnocurlCF at a pointP, we reod to zoan-in in to P inter appreximasiou:

- This means that we sheuld unake ε smoller and surdeor to captuee what is bappening very near to P and alse at P.

As $\varepsilon \rightarrow Q$ we are considering approximabiou on sumeller aises D_{E} so apperimabien gexes betten
in the einit as $\varepsilon \rightarrow Q$ the Rths apporacher the exact value of P;

For each wnit recton on we can understaid the compenent of curl(t) (p) in the n-divection:
this is the measure af circulation

- arauros the peint I
- in the clane orthegend te \sim
- and calculaled par unt-aneg
(1) Ne de net cansider
directly.
(2) We consriber its ompuant in a gien direction
n: the black arrow

$$
3
$$

$$
=[c u c e(F)](\nabla) \text { in }
$$

(3) This n component of [cure (F)] (P) is the circulation of the V.S. F in the plane ertlogonal to n :

(4) Cibre $(F)(P)$ measures the circuataies of F in all planes to throug P. ¿Preciedey:-

$$
\begin{aligned}
& \text { - circlation por } \\
& \text { uniz area } \\
& \text { - near po } J
\end{aligned}
$$

Weoland office hours
Satunday at 4 a Sundars if nooded!

